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I. Introduction 
 

The Finite Difference Time Domain (FDTD) technique consists of simulating time 
varying electromagnetic fields in various media with Maxwell’s curl equations in the form of 
finite difference equations, which are then used in a leapfrog fashion to incrementally advance the 
discretized electromagnetic fields forward in time and solve for them at alternating intervals in 
space [1]. The main drawback to the use of the FDTD method is the need for large computational 
resources, notably memory. The amount of memory required is a function of the grid employed to 
divide the problem space into individual cells. The memory requirements increase with the 
volume in the computational domain. The Conformal FDTD (CFDTD) code is being developed 
jointly by RMA [2] and the Navy for direct simulation of large complicated structures such as 
slotted waveguide array antennas. The ability to run on a parallel computing system and its highly 
versatile non-uniform meshing tool are two aspects of CFDTD that ease otherwise restrictive 
computational resource demands. CFDTD code performance including partitioning for parallel 
processing and computing runtimes are presented herein.    
  
II. Array Design 
 
  Slotted waveguide arrays have many applications in military microwave communications 
and radar systems [3]. Practical implementations often require large arrays consisting of many 
radiators in order to achieve the necessary directivity with specified sidelobe levels.  Two test 
cases were examined for this discussion.  The first test case consists of an array of 48 waveguide 
longitudinal shunt slots, while the second test case has 96 similar elements. The radiating 
elements are arranged in a rectangular formation using identical waveguides. In the top wall of 
each waveguide 6 shunt slots are positioned offset from the centerline to allow proper phasing for 
broadside radiation. The slots, which are spaced λg/2 apart, have identical widths, but have 
lengths adjusted to create a taper illumination.  Each waveguide is excited with an incident TE10 
mode at one end and terminated at the opposite end.  The waveguide structure has a cross section 
of 0.837” x 0.2” with finite thicknessess of 0.032” and 0.04” for top and side walls, respectively.  
A detailed description of the 48 element array is presented in Figure 1.     
  
III. Modeling  
 

The analysis was conducted using a 16-node Linux cluster consisting of 2.4 GHz Pentium 
4 processors with a total of 32 GB of RDRAM.  Fig. 2 displays a screen capture of the Graphical 
User Interface, along with the partitioning of the problem space for parallel processing.  The 
computing domain can be divided equally or non-equally among the available processors.  For a 
given antenna problem, the code will allow partitioning along any one of the three principal axes. 
It is necessary that each node be given at least a certain minimal percentage of the problem to 
insure solution stability and accuracy.  The first case presented in this paper was simulated with 
equal partitioning between processors (in order to optimize the runtimes) along both the x and y 
axes.  In general, the meshing plays a very important role in achieving accuracy.  Both uniform 
and non-uniform grid options were available; the latter was selected to capture the rapid changes 
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in field distribution in and around the slots, while allowing for the use of larger cells in less 
critical areas thereby reducing both memory required and runtime. The mesh scheme utilized 
approximately 2.25 GB of memory. The model was excited with a Gaussian pulse and the 
simulation was run for 20k time steps.  Fig. 3 displays the voltage between the slotted and bottom 
wall within one of the waveguides. The decay in voltage amplitude as a function of time indicates 
that solution convergence was achieved. The array was then expanded in the E-plane to include 
96 slots. The mesh design remained the same, simply extended along one direction to account for 
the increased volume of the problem space. The memory utilized increased to 8 GB. The array 
model could easily be expanded to include more slots to form a much larger array given the 
memory available. However, this may require increasing the problem space in more than one 
dimension to avoid the reflection of oblique waves back in to the problem space. 
 
IV.  Results and Discussion 

 
The 48 element slot array analysis was carried out in both x and y partitioning directions. 

In the x direction, the E- and H-plane radiation patterns computed at a frequency of 9.75 GHz are 
displayed in Fig. 4.  The chart covers –90o to + 90o, where 0 o represents the boresight direction.  
The data show that there is a main lobe in the forward direction, with a 3 dB beamwidth of 
approximately 9 

o along the E-plane and 15o across the H-plane, respectively. The corresponding 
pattern directivity is 24.5 dB at the center frequency of 9.75 GHz.  The ellipticity in the beam 
pattern is mainly due to the layout of the antenna  since there are only 6 array elements along the 
φ=90o direction, whereas there are 8 elements along φ=0o. The difference in sidelobe formation 
between the two planes is due to both layout and the contrasts between the E-plane and H-plane 
patterns of the individual slot. The first sidelobe is 13 dB below the boresight peak, while the 
remaining sidelobes are at least 19.6 dB below peak.  The CFDTD results are then compared to 
both measurement and a Method of Moments (MoM) calculation [4], as indicated in Fig. 4.  Note 
that the MoM data assumes slots on an infinite ground plane with uniform fields transverse to all 
slots.  In the CFDTD simulation, the entire antenna problem was treated as a finite 3-D structure 
with a 5.600 x 7.056 in2 ground plane.  Nevertheless, the comparison shows good agreement 
between different data sets.  Fig. 5 shows CFDTD results for partitioning along both the x and y 
axes. The radiation patterns show the expected identical results. The computational time was 
slightly faster along the x-axis (3 hr 15min vs. 3 hr 27 min). The radiation pattern for the enlarged 
array is shown in figure 6. The directivity values for this array range from 27.2 to 27.4 dB over 
the 9.5 to 10 GHz frequency range. The sidelobes over the angle range of interest are narrower, 
have a sharper taper, and are more numerous than those of the 48-slot array, all of which is to be 
expected. 
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W = 0.837”   h = 0.2”   Wb = 0.125”      
X1 = 0.032”   X2 = -0.061”  X3 = 0.086”  
X4 = -0.086”   X5 = 0.061”   X6 = -0.032” 
Lb1 = Lb6 = 0.5963”   Lb2 = Lb5 = 0.6048”  Lb3 = Lb4 = 0.6158”  

 S = 0.275” 

 
                    Figure 1.  Slotted Waveguide Antenna Array (48 slots). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
                         Figure 2.  GUI and Partitioning.                                             Figure 3. Voltage vs. Time. 
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                (a)                  (b) 
                                             
                                                 Figure 4.  E-Plane (a) and H-Plane (b) Radiation Patterns.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Comparison Between x &  y Partitionings.                      Figure 6.  E-Plane Radiation Pattern for 

96-Element Slotted Array. 
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